Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biomedicines ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540122

RESUMEN

Lidocaine, a local anesthetic widely used in dentistry, is esteemed for its efficacy and safety. Recent research reveals its additional role in modulating the immune system, and particularly in reducing inflammation crucial for protecting tooth-supporting tissues. Notably, monocytes and macrophages, essential cellular components overseeing various physiological and pathological processes, stand as potential mediators of lidocaine's effects. Therefore, this study aimed to investigate how lidocaine influences cell behavior using RNA sequencing. To investigate the effect of lidocaine on THP-1 cells' behavior, we performed an MTT assay and RNA-Seq along with qPCR analyses to evaluate the transcriptomic and proteomic changes in THP-1 cells. Our results showed that a high dose of lidocaine (>1 mM) had a significant cytotoxic effect on THP-1 cells. However, a lidocaine dose lower than 0.5 mM induced a mixed anti-inflammatory profile by significantly upregulating tissue remodeling (GDF15, FGF7, HGF, COL4A3, COL8A2, LAMB2, LAMC2, PDGFRA, and VEGFA) and through the resolution of inflammation (Cpeb4, Socs1, Socs2, Socs3, Dusp1, Tnfaip3, and Gata3) gene cassettes. This study explores the effect of lidocaine on the THP-1 in the M2-like healing phenotype and provides potential applications of lidocaine's therapeutic effectiveness in dental tissue repair.

2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255941

RESUMEN

Many studies have been exploring the use of bone graft materials (BGMs) and mesenchymal stem cells in bone defect reconstruction. However, the regeneration potential of Algipore (highly purified hydroxyapatite) and Biphasic (hydroxyapatite/beta-tricalcium phosphate) BGMs combined with bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we evaluated their osseointegration capacities in reconstructing peri-implant bone defects. The cellular characteristics of BMSCs and the material properties of Algipore and Biphasic were assessed in vitro. Four experimental groups-Algipore, Biphasic, Algipore+BMSCs, and Biphasic+BMSCs-were designed in a rabbit tibia peri-implant defect model. Implant stability parameters were measured. After 4 and 8 weeks of healing, all samples were evaluated using micro-CT, histological, and histomorphometric analysis. In the energy-dispersive X-ray spectroscopy experiment, the Ca/P ratio was higher for Algipore (1.67) than for Biphasic (1.44). The ISQ values continuously increased, and the PTV values gradually decreased for all groups during the healing period. Both Algipore and Biphasic BGM promoted new bone regeneration. Higher implant stability and bone volume density were observed when Algipore and Biphasic BGMs were combined with BMSCs. Biphasic BGM exhibited a faster degradation rate than Algipore BGM. Notably, after eight weeks of healing, Algipore with BSMCs showed more bone-implant contact than Biphasic alone (p < 0.05). Both Algipore and Biphasic are efficient in reconstructing peri-implant bone defects. In addition, Algipore BGM incorporation with BSMCs displayed the best performance in enhancing implant stability and osseointegration potential.


Asunto(s)
Células Madre Mesenquimatosas , Procedimientos de Cirugía Plástica , Animales , Conejos , Oseointegración , Regeneración Ósea , Durapatita
3.
Clin Oral Investig ; 28(1): 30, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147180

RESUMEN

OBJECTIVES: This follow-up study aimed to report the 24- and 30-month outcomes of a cohort previously enrolled in a randomized clinical trial on surgical reconstructive treatment of peri-implantitis. METHODS: Twenty-four patients were diagnosed with peri-implantitis and treated with surgical reconstructive therapy with or without the adjunctive use of Er:YAG laser. Within-group and between-group comparisons were tested with mixed model with repeated measures. RESULTS: Regarding peri-implant pocket depth (PPD) reduction (control vs. laser test group) between 6 months (- 1.85 vs. - 2.65 mm) and 30 months (- 1.84 vs. - 3.04 mm), the laser group showed statistically significant changes but not the control group. In terms of radiographic marginal bone loss (RMBL) at 6 months (- 1.1 vs. - 1.46 mm) to 24 months (- 1.96 vs. - 2.82 mm), both groups showed statistical difference compared to baseline. The six explanted implants all were featured by severe peri-implantitis and mostly with no or limited keratinized tissue (< 2 mm) at baseline and membrane exposure after surgery. Among the 15 retained cases, eight cases achieved more than 50% peri-implant bone level gain. CONCLUSIONS: Within the limitation and follow-up time frame of this trial, the outcome of the surgical reconstructive therapy sustained or improved in most of the cases. However, 25% of the implants with severe peri-implantitis failed 2 years after the surgical reconstructive therapy. The use of Er:YAG laser favors PPD reduction in the longer term up to 30 months. CLINICAL RELEVANCE: Longer-term follow-up on reconstructive therapy of peri-implantitis revealed sustained or improved stability in certain cases, but the survival of implants with severe peri-implantitis has its limitation, especially when there is limited keratinized tissue (< 2 mm or no KT). TRIAL REGISTRATION: Clinical Trials Registration Number: NCT03127228 and HUM00160290.


Asunto(s)
Periimplantitis , Procedimientos de Cirugía Plástica , Humanos , Estudios de Seguimiento , Periimplantitis/cirugía , Atención Odontológica , Procesamiento de Imagen Asistido por Computador
4.
Biomedicines ; 11(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38001996

RESUMEN

This review examines the modifying factors affecting bond strength in various bonding scenarios, particularly their relevance to the longevity of dental restorations. Understanding these factors is crucial for improving clinical outcomes in dentistry. Data were gathered from the PubMed database, ResearchGate, and Google Scholar resources, covering studies from 1992 to 2022. The findings suggest that for dentin-resin bonds, minimizing smear layers and utilizing MMP inhibitors to prevent hybrid layer degradation are essential. In the case of resin-resin bonds, reversing blood contamination is possible, but preventing saliva contamination is more challenging, underscoring its critical importance during clinical procedures. Additionally, while pretreatment on ceramics has minimal impact on bond strength, the influence of specific colorings should be carefully considered in treatment planning. This comprehensive review highlights that although established practices recognize significant bond strength factors, ongoing research provides valuable insights to enhance the clinical experience for patients. Once confirmed through rigorous experimentation, these emerging findings should be swiftly integrated into dental practice to improve patient outcomes.

5.
Biomedicines ; 11(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893162

RESUMEN

Periodontitis involves the inflammation of the periodontal tissue, leading to tissue loss, while coronavirus disease 2019 (COVID-19) is a highly transmissible respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is amplified by poor systemic health. Key facilitators of SARS-CoV-2's entry into host cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). This review reveals that periodontal pockets can serve as a hotspot for virus accumulation, rendering surrounding epithelia more susceptible to infection. Given that ACE2 is expressed in oral mucosa, it is reasonable to suggest that poor periodontal health could increase the risk of COVID-19 infection. However, recent studies have not provided sufficient evidence to imply a significant effect of COVID-19 on periodontal health, necessitating further and more long-term investigations. Nevertheless, there are hypotheses linking the mechanisms of the two diseases, such as the involvement of interleukin-17 (IL-17). Elevated IL-17 levels are observed in both COVID-19 and periodontitis, leading to increased osteoclast activity and bone resorption. Lastly, bidirectional relationships between periodontitis and systemic diseases like diabetes are acknowledged. Given that COVID-19 symptoms may worsen with these conditions, maintaining good oral health and managing systemic diseases are suggested as potential ways to protect against COVID-19.

6.
Cancers (Basel) ; 15(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835505

RESUMEN

Oral submucous fibrosis (OSF) stands as a progressive oral ailment, designated as a potentially malignant disorder. OSF has gained widespread recognition as a significant precursor to malignant transformation. In the pursuit of dependable, straightforward, and non-invasive diagnostic measures for the early detection of oral malignant progression, research has delved into potential diagnostic biomarkers of OSF. This comprehensive review delves into current investigations that explore the correlation between various biomarkers and OSF. The molecular biomarkers of OSF are categorized based on cytology and sampling methods. Moreover, this review encompasses pertinent studies detailing how these biomarkers are acquired and processed. Within this scope, we scrutinize four potential biomarkers that hold the promise of facilitating the development of diagnostic tools for detecting early-stage OSF.

7.
J Prosthodont Res ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37574275

RESUMEN

PURPOSE: Polyetheretherketone (PEEK) is a new polymeric material that has received significant attention in dentistry because of its mechanical properties, biocompatibility, and aesthetics. However, the bonding performance of PEEK to other materials is not preferable. This study aimed to analyze the variations in the surface characteristics of PEEK under the chemical action of primers containing different functional monomers or polymers and to evaluate the bonding performance of PEEK and dental cement. METHODS: Disk-shaped PEEK samples were prepared by dental milling, blasting with alumina oxide, and covering with primers containing functional monomers or polymers. The surface characteristics of the samples were analyzed by microscopy and spectroscopy. The shear bond strength (SBS) between PEEK and dental cement, with and without thermocycling, was tested using a universal testing machine. Finally, the data were statistically analyzed and compared. RESULTS: Functional monomers or polymers were successfully bonded to the surface of PEEK. This treatment significantly improved its hydrophilicity and surface free energy (P < 0.05). The primer containing pentaerythritol triacrylate had the highest SBS without thermocycling (13.89 MPa). Meanwhile, the primers containing urethane dimethacrylate (UDMA) and methyl methacrylate (MMA) (abbreviated as the HC group) showed the highest SBS and lowest reduction (25.51%) after thermocycling. Notably, all the testing groups achieved the ISO10477 standard of 5 MPa. After thermocycling, adhesive failure accounted for the largest proportion of failures in all the groups except the HC group. CONCLUSIONS: The chemical priming treatment can significantly improve the SBS of PEEK and dental cement. Moreover, a primer containing both UDMA and MMA can provide improved bonding for PEEK materials.

8.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36987233

RESUMEN

This study reports a carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) composite film that incorporates Calendula officinalis (CO) extract for biomedical applications. The morphological, physical, mechanical, hydrophilic, biological, and antibacterial properties of CMC/PVA composite films with various CO concentrations (0.1%, 1%, 2.5%, 4%, and 5%) are fully investigated using different experiments. The surface morphology and structure of the composite films are significantly affected by higher CO concentrations. X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FTIR) analyses confirm the structural interactions among CMC, PVA, and CO. After CO is incorporated, the tensile strength and elongation upon the breaking of the films decrease significantly. The addition of CO significantly reduces the ultimate tensile strength of the composite films from 42.8 to 13.2 MPa. Furthermore, by increasing the concentration of CO to 0.75%, the contact angle is decreased from 15.8° to 10.9°. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay reveals that the CMC/PVA/CO-2.5% and CMC/PVA/CO-4% composite films are non-cytotoxic to human skin fibroblast cells, which is favorable for cell proliferation. Remarkably, 2.5% and 4% CO incorporation significantly improve the inhibition ability of the CMC/PVA composite films against Staphylococcus aureus and Escherichia coli. In summary, CMC/PVA composite films containing 2.5% CO exhibit the functional properties for wound healing and biomedical engineering applications.

9.
Dent J (Basel) ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275677

RESUMEN

The current digital dentistry workflow has streamlined dental restoration production, but the effectiveness of digital virtual design and 3D printing for restorations still needs evaluation. This study explores the impact of model-free digital design and 3D-printing placement angles on restorations, including single crowns and long bridges produced with and without casts. The restorations are 3D printed using resin at placement angles of 0°, 60°, and 90°. Each group of samples was replicated ten times, resulting in a total of 120 restorations. The Root Mean Square Error (RMSE) value was used to evaluate the surface integrity of the restoration. In addition, the contact space, edge gap, and occlusal space of restorations produced by different processes were recorded. The results indicate that there was no significant difference in the RMSE value of the crown group (p > 0.05). Changing the bridge restoration angle from 0° to 90° resulted in RMSE values increasing by 2.02 times (without casts) and 2.39 times (with casts). Furthermore, the marginal gaps in the crown group were all less than 60 µm, indicating good adaptation. In contrast, the bridge group showed a significant increase in marginal gaps at higher placement angles (p > 0.05). Based on the findings, virtual fabrication without casts does not compromise the accuracy of dental restorations. When the position of the long bridge exceeds 60 degrees, the error will increase. Therefore, designs without casts and parallel placement result in higher accuracy for dental restorations.

10.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36552559

RESUMEN

Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.

11.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361575

RESUMEN

Glass-ceramic spray deposition (GCSD) is a novel technique for coating lithium disilicate (LD) glass-ceramics onto zirconia through simple tempering steps. GCSD has been proven to improve the bonding of zirconia to resin cement, but the effect of etching time on GCSD and the long-term durability of the bond achieved remain unknown. The effects of air abrasion with aluminum particles (ABB) and air abrasion (GAB) or etching with 5.0% hydrogen fluoride (HF) for 20, 60, 90, and 120 s (G20, G60, G90, and G120) on the resin cement−zirconia bond were studied. LD was included as a control (LDG). The microstructure, sub-micron roughness, wettability, and phase changes of samples were analyzed. After resin cement was bonded to zirconia, half of the samples were subjected to thermocycling (5000 cycles at 5−55 °C). The bond strengths of the samples were determined in shear bond strength (SBS) tests (n = 10 per group). An LD structure can be formed on zirconia after GCSD and proper etching processes, which result in high roughness and a hydrophilic nature. GCSD and HF etching significantly improved SBS, with G90 and G120 samples with pre- or post-thermocycling exhibiting SBS values comparable to those of LDG (p > 0.760). The surface characteristics of the LD layer are influenced by the etching time and affect the SBS of the bond of zirconia to resin cement. HF etching for 90−120 s after GCSD results in zirconia with SBS and bond durability comparable to LD.


Asunto(s)
Recubrimiento Dental Adhesivo , Circonio , Circonio/química , Cementos de Resina/química , Adhesivos , Ensayo de Materiales , Propiedades de Superficie , Cerámica/química , Resistencia al Corte , Ácido Fluorhídrico/química , Tecnología
12.
Front Oncol ; 12: 1001126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330492

RESUMEN

Oral cancer, constituted up to 90% by squamous cell carcinomas, is a significant health burden globally. Grape seed proanthocyanidins (PA) have been suggested as a potential chemopreventive agent for oral cancer. However, their efficacy can be restricted due to the low bioavailability and bioaccessibility. Inspired by sandcastle worm adhesive, we adapted the concept of complex coacervation to generate a new type of drug delivery platform. Complex coacervates are a dense liquid phase formed by the associative separation of a mixture of oppositely charged polyelectrolytes, can serve as a drug delivery platform to protect labile cargo. In this study, we developed a complex coacervates-based delivery of PA. The release kinetics was measured, and anticancer effects were determined in two human tongue squamous cell carcinoma cell lines. The results showed that complex coacervate successfully formed and able to encapsulate PA. Additionally, PA were steadily released from the system in a pH-dependent manner. The drug delivery system could significantly inhibit the cell proliferation, migration, and invasion of cancer cells. Moreover, it could markedly reduce the expression of certain matrix metalloproteinases (MMP-2, 9, and 13) crucial to metastatic processes. We also found that suppression of protein kinase B (Akt) pathway might be the underlying mechanism for these anticancer activities. Taken together, complex coacervates-based delivery of PA can act as an effective anticancer approach for oral cancer therapy.

13.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955695

RESUMEN

Periodontitis is a common oral disease mainly caused by bacterial infection and inflammation of the gingiva. In the prevention or treatment of periodontitis, anti-bacterial agents are used to inhibit pathogen growth, despite increasing levels of bacterial resistance. Sapindus mukorossi Gaertn (SM) seed oil has proven anti-bacterial and anti-inflammation properties. However, the possibility of using this plant to prevent or treat periodontitis has not been reported previously. The aim of this study was to evaluate the effects of SM oil on experimental periodontitis in rats by using micro-CT and microbiota analysis. The distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the sagittal micro-CT slide showed that total bone loss (TBL) was significantly lower in CEJ-ABC distances between SM oil and SM oil-free groups on Day 14. Histology data also showed less alveolar bone resorption, a result consistent result with micro-CT imaging. The microbiota analyzed at phylum and class levels were compared between the SM oil and SM oil-free groups on Day 7 and Day 14. At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacterium. Firmicutes in box plot analysis was significantly less in the SM oil group than in the SM oil-free group on Day 7. At the class level, Bacteroidia, Gammaproteobacteria, Bacilli, Clostridia, and Erysipelotrichia were the dominant bacteria. The bacteria composition proportion of Bacilli, Clostridiay, and Erysipelotrichia could be seen in the SM oil group significantly less than in t SM oil-free group on Day 7. Overall, the present results show that topical application of SM oil can reduce bone resorption and change bacteria composition in the ligature-induced periodontitis model. According to these results, it is reasonable to suggest SM oil as a potential material for preventing oral disease.


Asunto(s)
Pérdida de Hueso Alveolar , Microbiota , Periodontitis , Sapindus , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/patología , Animales , Bacterias , Modelos Animales de Enfermedad , Periodontitis/patología , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Ratas
14.
Front Oncol ; 12: 775541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912234

RESUMEN

Purpose: Current treatment options for head and neck squamous cell carcinoma (HNSCC) are limited, especially for cases with cancer stem cell-induced chemoresistance and recurrence. The WNT signaling pathway contributes to maintenance of stemness via translocation of ß-catenin into the nucleus, and represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA), a steroid hormone, has potential as an anticancer drug. However, the potential anticancer mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in HNSCC remain unclear. Methods: Firstly, SRB assay and sphere formation assay were used to examine cellular viability and cancer stem cell-like phenotype, respectively. The expressions of stemness related factors were measured by RT-qPCR and western blotting. The luciferase reporter assay was applied to evaluate transcriptional potential of stemness related pathways. The alternations of WNT signaling pathway were measured by nuclear translocation of ß-catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied. Results: We found that DHEA reduced HNSCC cell viability, suppressed sphere formation, and inhibited the expression of cancer-stemness markers, such as BMI-1 and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active form of ß-catenin and reduced the protein expression of the downstream targets, CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug, irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by reduced cell viability, sphere formation, expression of stemness markers, and activation of the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both orthotopic and subcutaneous xenograft mouse models. Conclusion: These findings indicate that DHEA has anti-stemness potential in HNSCC and serves as a promising anticancer agent. The combination of DHEA and IRN may provide a potential therapeutic strategy for patients with advanced HNSCC.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35742702

RESUMEN

Minimally invasive procedures were introduced in periodontics, which could enhance clinical outcomes and reduce post-operative discomfort. However, minimally invasive non-surgical periodontal therapy (MINST) as an alternative modality of conventional non-surgical root surface debridement has not been clearly evaluated by randomized controlled clinical trial. The present study aimed to investigate clinical outcomes and patients' comfort feedback of MINST compared to conventional non-surgical periodontal therapy (CNST). Patients with moderate to severe periodontitis were included. Nine out of ten patients were recruited and completed the post-treatment re-evaluation in this study. Randomized split-mouth design, CNST and MINST on each side, was performed. Clinical parameters, including periodontal probing depth (PD), gingival recession (REC), clinical attachment level (CAL), and gingival bleeding on probing (BOP), were recorded on baseline, 1 month and 3 months post-treatment. Non-parametric statistics were used for analysis. PD, REC, CAL, and BOP were improved after treatment in both CNST and MINST groups. Comfort feedback and gingival recession showed better outcomes in the MINST group than in the CNST group. No statistical significance of parameters was found between CNST and MINST. Within the limitations, minimally invasive non-surgical periodontal therapy could be an alternative modality of conventional non-surgical periodontal therapy. Further studies are required to establish clinical protocol and evidence of MINST.


Asunto(s)
Recesión Gingival , Periodontitis , Estudios de Seguimiento , Recesión Gingival/cirugía , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Índice Periodontal , Periodontitis/terapia , Proyectos Piloto , Resultado del Tratamiento
16.
Cell Death Discov ; 8(1): 101, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249111

RESUMEN

Pulmonary metastasis occurring via the colonization of circulating cancer stem cells is a major cause of oral squamous cell carcinoma (OSCC)-related death. Thus, understanding the mechanism of OSCC pulmonary metastasis may provide a new opportunity for OSCC treatment. FAS, a well-known apoptosis-inducing death receptor, has multiple nonapoptotic, protumorigenic functions. Previously, we found that SAS OSCC cells with FAS receptor knockout did not affect orthotopic tumor growth or cervical lymph node metastasis. However, FAS knockout cells could not colonize in distant organs to form metastases upon intravenous injection, which hinted at the cancer stemness function of the FAS receptor. Immunohistochemistry staining indicated that the FAS receptor serves as a poor prognosis marker in OSCC patients. FAS knockout inhibited in vitro cancer spheroid formation, migration and invasion, and prevented mesenchymal transition in OSCC cells and inhibited OSCC pulmonary metastasis in vivo. To determine the regulatory mechanism by which the FAS receptor exerts its oncogenic function, we utilized cDNA microarrays and phosphoprotein arrays to discover key candidate genes and signaling pathway regulators. JAG1 expression and NOTCH pathway activation were controlled by the FAS receptor through ERK phosphorylation. Both JAG1 and NOTCH1 silencing decreased in vitro cancer spheroid formation. In OSCC cells, FAS ligand or JAG1 protein treatment increased NOTCH pathway activity, which could be abolished by FAS receptor knockout. In FAS knockout cells, restoring the NOTCH1 intracellular domain stimulated cancer spheroid formation. Both JAG1 and NOTCH1 silencing decreased in vivo OSCC growth. In conclusion, we found a novel FAS-ERK-JAG1-NOTCH1 axis that may contribute to OSCC stemness and pulmonary metastasis.

17.
Stem Cell Res Ther ; 13(1): 73, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183254

RESUMEN

BACKGROUND: Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin on the osteogenic differentiation and bone regeneration capacities of DPSCs. METHODS: The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP + DPSCs, and MBCP + DPSCs + melatonin preconditioning in four-created calvarial bone defects by using micro-computed tomographic, histological, histomorphometric, and immunohistochemical analyses after 4 and 8 weeks of healing. RESULTS: In vitro experiments revealed that melatonin (1, 10, and 100 µM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the protein expression of ALP, OCN, and RUNX-2 and inhibited COX-2/NF-κB expression. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) p38/ERK signaling was significantly increased in DPSCs treated with 100 µM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned DPSCs exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05). CONCLUSIONS: These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSCs function and regenerative capacities.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Regeneración Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental , Melatonina/farmacología , Proteínas Quinasas Activadas por Mitógenos/farmacología , Osteogénesis
18.
J Periodontal Res ; 57(1): 115-130, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716926

RESUMEN

BACKGROUND AND OBJECTIVES: The mechanisms of particulate matter (PM) toxicity involve the generation of ROS and upregulation of proinflammatory molecules. Nrf2 is a multifunctional cytoprotective transcription factor that regulates the expression of various antioxidant, anti-inflammatory, and detoxifying molecules, such as HO-1. As surfactin has potential to induce Nrf2 activation and HO-1 expression, this study aimed to investigate the anti-inflammatory effects of surfactin on PM-exposed human gingival fibroblasts (HGFs) and signaling pathways engaged by surfactin. MATERIALS AND METHODS: Human gingival fibroblasts were challenged by PM with or without surfactin pretreatment. The expression of Nrf2, HO-1, VCAM-1, and other molecules was determined by western blot, real-time PCR, or ELISA. Human monocytic THP-1 cells labeled with fluorescent reagent were added to HGFs, and the cell adhesion was assessed. ROS generation and NADPH oxidase activity were also measured. The involvement of Nrf2/HO-1 and ROS signaling pathways was investigated by treating HGFs with specific pathway interventions, genetically or pharmacologically. One dose of surfactin was given to mice before PM treatment to explore its in vivo effect on VCAM-1 expression in gingival tissues. RESULTS: Particulate matter led to VCAM-1-dependent monocyte adhesion in HGFs, which was regulated by PKCα/NADPH oxidase/ROS/STAT1/IL-6 pathway. Surfactin could attenuate monocyte adhesion by disrupting this VCAM-1-dependent pathway. Additionally, surfactin promoted Nrf2-dependent HO-1 expression in HGFs, mitigating VCAM-1 expression. PM-treated mice exhibited the lower expression of IL-6 and VCAM-1 in gingival tissues if they previously received surfactin. CONCLUSION: Surfactin exerts anti-inflammatory effects against PM-induced inflammatory responses in HGFs by inhibiting VCAM-1-dependent pathway and inducing Nrf2/HO-1 axis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Material Particulado , Animales , Fibroblastos , Hemo-Oxigenasa 1/genética , Humanos , Ratones , Monocitos , Material Particulado/toxicidad , Molécula 1 de Adhesión Celular Vascular
19.
Cells ; 10(10)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685642

RESUMEN

Magnets have been widely used in dentistry for orthodontic tooth movement and denture retention. Nevertheless, criticisms have arisen regarding the biosafety of static magnetic field (SMF) effects on surrounding tissues. Various controversial pieces of evidence have been discussed regarding SMFs on cellular biophysics, but little consensus has been reached, especially in the field of dentistry. Thus, the present paper will first review the safe use of SMFs in the oral cavity and as an additive therapy to orthodontic tooth movement and periodontium regeneration. Then, studies regarding SMF-incorporated implants are reviewed to investigate the advantageous effects of SMFs on osseointegration and the underlying mechanisms. Finally, a review of current developments in dentistry surrounding the combination of magnetic nanoparticles (MNPs) and SMFs is made to clarify potential future clinical applications.


Asunto(s)
Campos Magnéticos , Boca/citología , Medicina Regenerativa , Animales , Comunicación Celular , Humanos , Osteoclastos/citología , Regeneración/fisiología
20.
Case Rep Dent ; 2021: 8694775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712499

RESUMEN

Ameloblastoma is a benign but locally invasive neoplasm of the odontogenic epithelium that tends to grow slowly in the mandible or maxilla. It can be highly destructive to the surrounding dental anatomy and can cause death by progressive spread to nearby vital structures in rare cases. Marginal resection is the most effective method of eliminating the tumor, but treatment can further contribute to oral and dental deformity and malfunction. This clinical report describes the dental rehabilitation of a young adult patient diagnosed with ameloblastoma and underwent preliminary marsupialization, segmental mandibulectomy, and fibula free flap reconstruction, followed by mandibular dental implant placements. Orthodontic and rapid palatal expansion for maxillary arch correction was also performed. The treatment goal of regaining dental function and a satisfactory appearance was accomplished.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...